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‣ Introduction: why fully differential predictions are important?	



‣ What is known: SCET resummation framework for stable tops, PIM and 1PI kinematics	



‣ Include decay and implement known higher order corrections in a parton level MC	



‣ Results: distributions for the LHC at 8 TeV
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Why improved differential predictions?
LHC experiments:	


!
‣ measure of differential cross sections to test theory predictions	


‣ top quarks are not directly detected, but reconstructed from their decay products	


‣ top decays nearly exclusively 	


‣ realistic cuts on leptons-jets-met in the final state	


!
State of the art predictions for top-pair production at hadron colliders:	


!
Stable tops (inclusive):	


!
‣ NNLO+NNLL               [Bärnreuther, Czakon, Fiedler, Mitov ’12, ’13]    	


!
‣ NLO+NNLL (Approx-NNLO)                                 [Kidonakis, Laenen, Moch, Vogt ’01]	


                                                                                                              [Ahrens, Ferroglia, Neubert, Pecjak, Yang ’10, ’11]	


!
Unstable tops (exclusive):	


!
‣ NLO: On-shell top-pair production with decay [Bernreuther et al., ’04, Melnikov & Schulze, ’09, Ellis & Campbell ’12]	



‣ NLO                     [Bevilacqua et al. ’11; Denner et al. ’11 ’12; Frederix ’13; Cascioli et al. ’13]	


!
!
Is it possible to improve fixed-order NLO predictions for unstable top-pair production?

t ! W+b

W+W�bb̄

(�
tot

)
✓

d2�

dMtt̄d cos ✓
,

d2�

dpT dy

◆
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Improvement at the production level

‣ It is possible to compute higher order contributions in perturbation theory using 
the knowledge of lower orders by solving RGEs	



‣ These terms capture an important part of the higher order correction

Stable top-pair: approx-NNLO predictions (from NNLL resummation formula) for the                                            
were obtained by [Ahrens, Ferroglia, Neubert, Pecjak, Yang ’10, ’11] in PIM and 1PI kinematics (using SCET 
methods)

Idea:  “improve” the weights of the events (in parton-level MC) by including approx-NNLO 
corrections for the production subprocess and use these to look at other distributions!	



‣ adapt and include these corrections in a fully differential framework	



‣ inclusion of top decay in NWA	



!

!

Mtt̄, pT , y
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PIM & 1PI kinematics

One Particle Inclusive kinematics (1PI)

emphasized that in the PIM and 1PI threshold regions the top squarks are not forced to be
nearly at rest, as in case of the threshold region defined by the limit � =

p
1� 4mt̃

1

/s ! 0,
which is often employed in the calculation of soft gluon corrections to the total cross section
[6, 17, 18]. In the rest of the paper, we refer to the � ! 0 limit as the production threshold
region.

Our goal is to employ both the PIM and 1PI kinematics to obtain approximate NNLO
formulas for the total top-squark pair-production cross section. Both approaches include the
numerically large contributions arising from the emission of soft gluons, but di↵er among them
and with the production threshold calculations in the kind of power suppressed terms which
are neglected.

2.1 PIM Kinematics

We focus first on the PIM kinematics approach. It is convenient to introduce the following
quantities

z =
M2

s
, ⌧ =

M2

S
, �t̃

1

=

s

1�
4m2

t̃
1

M2
. (5)

Consequently, the PIM threshold limit s ! M2 corresponds to the limit z ! 1. According to
the QCD factorization theorem [23], the di↵erential cross section in M and ✓ (the scattering
angle of the top squark with respect to the incoming partons beam in the partons rest frame)
is given by

d2�

dMd cos ✓
=

⇡�t̃
1

SM

X

i,j

Z 1

⌧

dz

z
ffij

⇣⌧
z
, µf

⌘
CPIM,ij (z,M, cos ✓, µf ) , (6)

where µf is the factorization scale, and the sum runs over the incoming partons. In the
following we drop the subscript PIM (and the corresponding subscript 1PI) whenever there
is no ambiguity about the kinematic scheme employed, or when a formula applies to both
schemes. The parton luminosity ff is defined as the convolution of the non-perturbative
parton distribution functions (PDF) for the incoming partons i and j:

ffi,j(y, µf ) =

Z 1

y

dx

x
fi/N

1

(x, µf ) fj/N
2

⇣y
x
, µf

⌘
⌘ fi/N

1

(y)⌦ fj/N
2

(y) . (7)

The functions Cij in Eq. (6) are the hard-scattering kernels, which are related to the partonic
cross sections and can be calculated in perturbation theory. In order not to make the notation
unnecessarily heavy, we do not indicate explicitly the fact that the hard scattering kernels
depend on the top squark masses mt̃

1

and mt̃
2

, the mass mq̃ of the first two families squarks
(which we assume to be degenerate), the top quark mass mt, the gluino mass mg̃, and the
t̃1-t̃2 mixing angle ↵. The expansion of the Cij functions in powers of ↵s has the generic form

Cij = ↵2
s


C

(0)
ij +

↵s

4⇡
C

(1)
ij +

⇣↵s

4⇡

⌘2

C
(2)
ij +O(↵3

s)

�
. (8)

4

to study the invariant mass distribution
to study the transverse momentum and 

rapidity distributions

in the literature. One of the main results of this paper is the calculation of the coe�cients
D

(2,PIM)
i (i = 0, · · · , 3) both in the quark annihilation and gluon fusion channel. We can also

evaluate all of the scale dependent terms in C
(2,PIM)
0 in both channels, but due to the ambiguity

on the choice of the normalization scale in the argument of these logarithms we drop part of
these terms in the numerical implementation of our formulas. We will return to this issue
below.

2.2 1PI Kinematics

The 1PI kinematics approach allows one to describe observables in which a single particle,
rather than a pair, is detected. One can then write the top squark rapidity (y) and transverse
momentum (pT ) distribution as

d2�

dpTdy
=

2⇡pT
S

X

ij

Z 1

xmin

1

dx1

x1

Z 1

xmin

2

dx2

x2

fi/N
1

(x1, µf )fj/N
2

(x2, µf )C1PI,ij (s4, s, t1, u1, µf ) . (20)

The expansion of the 1PI hard scattering kernels C1PI in powers of ↵s has the same structure
shown in Eq. (8) for the PIM case. Obviously, also in this case only the qq̄ channel and gg
channel give a non vanishing contribution at lowest order in ↵s. The hadronic Mandelstam
variables T1 and U1 are related to the stop rapidity and transverse momentum through the
relations

T1 = �
p
Sm?e

�y , U1 = �
p
Sm?e

y , (21)

where m? =
q
p2T +m2

t̃
1

. Therefore the variables s, s4, t1, and u1, which are arguments of the

1PI hard functions, can be written in terms of pT , y, x1, and x2. The lower limits of integration
in Eq. (20) are

xmin
1 = � U1

S + T1

, xmin
2 = � x1T1

x1S + U1

. (22)

In order to obtain the total cross section it is necessary to integrate the double-di↵erential
distribution with respect to the top squark rapidity and transverse momentum over the range

0  |y|  1

2
ln

1 +
p
1� 4m2

?/S

1�p
1� 4m2

?/S
, 0  pT 

r
S

4
�m2

t̃
1

. (23)

As in the case of PIM kinematics, in the 1PI kinematics soft emission limit s4 ! 0, the
hard scattering kernels factor into the product of hard and soft functions:

Cij (s4, s
0, t01, u

0
1, µ) = Tr [Hij (s

0, t01, u
0
1, µ)Sij (s4, s

0, t01, u
0
1, µ)] +O(s4) . (24)

As emphasized in [21], the Mandelstam invariants s0, t01, and u0
1 can di↵er from s, t1, and u1

by power corrections proportional to s4. For example explicit results for the hard and soft
functions can be rewritten by employing either the relation s0+ t01+u0

1 = 0 or s0+ t01+u0
1 = s4.

The di↵erence between the two choices is due to terms suppressed by positive powers of s4. A
detailed description of the way in which we deal with this ambiguity can be found in Section
4 of [21].

7

Soft gluon Energy Soft gluon Energy

N1(P1) +N2(P2) ! t(pt) + (t̄+X)(pt̄ + pX)N1(P1) +N2(P2) ! (t+ t̄)(pt + pt̄) +X(pX)

Mtt̄ = (pt + pt̄)
2 s4 = (pt̄ + pX)2 �m2

t

Es =
s4⇣

2
p

m2
t + s4

⌘Es =
(1� z)Mtt̄

2
p
z

The Pair Invariant Mass kinematics (PIM) 

(1� z) = 1�
M2

tt̄

s
! 0 s4 ! 0
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PIM & 1PI factorization
Factorization of the cross sections studied in these limits by	



QCD: [Kidonakis, Laenen, Moch, Sterman,…], SCET: [Ahrens, Ferroglia, Neubert, Pecjak, Yang, ’10, ‘11]

2.1 PIM and 1PI kinematics

In this subsection we briefly summarize the main features of the PIM and 1PI kinematics
schemes. In the case of PIM kinematics it is convenient to introduce the quantities

z =
M2

s
, �

t

=

r

1 � 4m2
t

M2
, (5)

where the threshold region is identified by the limit z ! 1. The doubly di↵erential partonic
cross section in M and in ✓ (the scattering angle of the top quark in the partonic center
of mass frame) assume the following form

d2�̂

dMd cos ✓
=

⇡�
t

sM

X

i,j

CPIM, ij

(z, M, m
t

, cos ✓, µ
f

) , (6)

where µ
f

is the factorization scale and we summed over the incoming partons (i, j). The
functions CPIM, ij

in Eq. (??) are usually called hard-scattering kernels and they can be
computed perturbatively. In fact, independently of the kinematics, the kernels C

ij

have an
expansion in powers of ↵

s

C
ij

= ↵2
s



C(0)
ij

+
↵

s

4⇡
C(1)

ij

+
⇣↵

s

4⇡

⌘2

C(2)
ij

+ O(↵3
s

)

�

. (7)

At LO in ↵
s

, the non-zero scattering kernels correspond to the quark anti-quark annihila-
tion channel and to the gluon fusion channel, i, j 2 {qq̄, gg}. At higher orders in ↵

s

one
has to consider the virtual and real corrections to the Born approximation and the new
partonic channels that open up at that order, for example gq ! tt̄q at order ↵

s

. The
hard-gluon emission and the additional production channel contribute to the NLO part
of our calculation and they are taken into account via the matching procedure. On the
contrary, these contributions are suppressed by powers of the soft expansion parameter
and therefore can be neglected within the partonic-threshold region.

In [27] it was shown that in the limit of soft gluon emissions, z ! 1, the hard-scattering
kernels C

ij

factor into a product of hard and soft functions which are matrices in color space:

CPIM, ij

(z, M, m
t

, cos ✓, µ
f

) = Tr
⇥

H
ij

(M, m
t

, cos ✓, µ
f

)SPIM, ij

(
p

s(1 � z), M, m
t

, cos ✓, µ
f

)
⇤

.
(8)

The hard functions H
ij

are obtained from the virtual corrections and they are ordinary
functions of their arguments. The soft functions SPIM, ij

describe the real emission of soft
gluons and contain distributions which become singular in the threshold limit z ! 1. At
order ↵n

s

the soft functions depend on terms proportional to plus distributions of the form

P
m

(z) =



lnm(1 � z)

1 � z

�

+

; m = 0, . . . , 2n � 1 , (9)

and on terms proportional to the delta distribution �(1 � z).
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The 1PI kinematics is commonly used to describe observables related to a single heavy
particle rather than a pair. At the partonic level 1PI kinematics allows to write the top
quark rapidity (y) and transverse momentum (p

T

) distributions as

d2�̂

dp
T

dy
=

2⇡p
T

s

X

i,j

C1PI, ij(s4, s, t1, u1, mt

, µ
f

) . (10)

In analogy to the PIM case, also in 1PI kinematics the hard-scattering kernels factor into
a product of hard and soft functions in the limit of soft gluon emissions s4 ! 0:

C1PI, ij(s4, s, t1, u1, mt

, µ
f

) = Tr [H
ij

(s, t1, u1, mt

, µ
f

)S1PI, ij(s4, s, t1, u1, mt

, µ
f

)] , (11)

where H
ij

and S1PI, ij are matrices in color space. While the hard functions in PIM and
1PI kinematics are identical, the soft functions di↵er in the two schemes. In particular, at
order ↵n

s

the 1PI soft functions include terms proportional to singular plus distributions
which depend on s4:

P̄
m

(s4) =



lnm(s4/m2
t

)

s4

�

+

=
1

m2
t

P
m

✓

1 � s4

m2
t

◆

; m = 0, . . . , 2n � 1 . (12)

2.2 Inclusion of tree-level decays

After reviewing the general features of the PIM and 1PI kinematics for the production
subprocess in Eq. (1), we use the formalism outlined in the previous subsection to include
the tree-level semi-leptonic decays of the top quarks:

t ! bW+ ! b(p3)l̄1(p5)⌫1(p6) ,

t̄ ! b̄W� ! b̄(p4)l2(p7)⌫̄2(p8) , (13)

where

p
t

= p3 + p5 + p6, p
t̄

= p4 + p7 + p8 , (14)

p
W

+ = p5 + p6, p
W

� = p7 + p8 . (15)

We are interested in keeping the information about spin-correlations between the top
quarks and their decay products, for this reason the hard functions H

ij

need to be recom-
puted starting from the helicity amplitudes. The results available in the literature for the
tt̄ hard functions are already summed over the helicities of the external particles and they
don’t allow for a direct inclusion of the top decays. The one-loop helicity amplitudes for
the production subprocess became recently available in [32]. By combining every helicity
configuration of the produced heavy pair together with the corresponding helicity for the
decay subprocess, we construct the required hard functions where the spin-correlations
are included. In particular, every helicity configuration {�} ⌘ (�1, . . . , �8) of the total
amplitude is expressed as a color-decomposed function of eight external momenta:

M{�}
ij, {a}(p1, . . . p8, mt

, µ
f

) =
X

I

M{�}
ij, I

(p1, . . . p8, mt

, µ
f

)(cij

I

){a} , (16)
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subprocess in Eq. (1), we use the formalism outlined in the previous subsection to include
the tree-level semi-leptonic decays of the top quarks:

t ! bW+ ! b(p3)l̄1(p5)⌫1(p6) ,

t̄ ! b̄W� ! b̄(p4)l2(p7)⌫̄2(p8) , (13)

where

p
t

= p3 + p5 + p6, p
t̄

= p4 + p7 + p8 , (14)

p
W

+ = p5 + p6, p
W

� = p7 + p8 . (15)

We are interested in keeping the information about spin-correlations between the top
quarks and their decay products, for this reason the hard functions H

ij

need to be recom-
puted starting from the helicity amplitudes. The results available in the literature for the
tt̄ hard functions are already summed over the helicities of the external particles and they
don’t allow for a direct inclusion of the top decays. The one-loop helicity amplitudes for
the production subprocess became recently available in [32]. By combining every helicity
configuration of the produced heavy pair together with the corresponding helicity for the
decay subprocess, we construct the required hard functions where the spin-correlations
are included. In particular, every helicity configuration {�} ⌘ (�1, . . . , �8) of the total
amplitude is expressed as a color-decomposed function of eight external momenta:

M{�}
ij, {a}(p1, . . . p8, mt

, µ
f

) =
X

I

M{�}
ij, I

(p1, . . . p8, mt

, µ
f

)(cij

I

){a} , (16)

7

‣ H and S satisfy RG equations	



‣ By knowing H and S at NLO in both kinematics, we can solve explicitly the RG equations for H and S at 
NNLO	
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Adding the top decay

‣ On-shell top-quarks decayed in NWA	



‣ Corrections to the decay are included only at fixed order (LO/NLO)	



Factorization of amplitudes:	



!

!

‣ Glue together production/decay using spinor-helicity methods production amps: [Badger, Sattler, Yundin, ‘11]	



‣ Spin correlations between production and decay included	



‣ Decompose amplitudes in color basis to construct hard functions	



!

!

!

‣ W-bosons also decayed to leptons	



The 1PI kinematics is commonly used to describe observables related to a single heavy
particle rather than a pair. At the partonic level 1PI kinematics allows to write the top
quark rapidity (y) and transverse momentum (p

T

) distributions as

d2�̂

dp
T

dy
=

2⇡p
T

s

X

i,j

C1PI, ij(s4, s, t1, u1, mt

, µ
f

) . (10)

In analogy to the PIM case, also in 1PI kinematics the hard-scattering kernels factor into
a product of hard and soft functions in the limit of soft gluon emissions s4 ! 0:

C1PI, ij(s4, s, t1, u1, mt

, µ
f

) = Tr [H
ij

(s, t1, u1, mt

, µ
f

)S1PI, ij(s4, s, t1, u1, mt

, µ
f

)] , (11)

where H
ij

and S1PI, ij are matrices in color space. While the hard functions in PIM and
1PI kinematics are identical, the soft functions di↵er in the two schemes. In particular, at
order ↵n

s

the 1PI soft functions include terms proportional to singular plus distributions
which depend on s4:

P̄
m

(s4) =



lnm(s4/m2
t

)

s4

�

+

=
1

m2
t

P
m

✓

1 � s4

m2
t

◆

; m = 0, . . . , 2n � 1 . (12)

2.2 Inclusion of tree-level decays

After reviewing the general features of the PIM and 1PI kinematics for the production
subprocess in Eq. (1), we use the formalism outlined in the previous subsection to include
the tree-level semi-leptonic decays of the top quarks:

t ! bW+ ! b(p3)l̄1(p5)⌫1(p6) ,

t̄ ! b̄W� ! b̄(p4)l2(p7)⌫̄2(p8) , (13)

where

p
t

= p3 + p5 + p6, p
t̄

= p4 + p7 + p8 , (14)

p
W

+ = p5 + p6, p
W

� = p7 + p8 . (15)

We are interested in keeping the information about spin-correlations between the top
quarks and their decay products, for this reason the hard functions H

ij

need to be recom-
puted starting from the helicity amplitudes. The results available in the literature for the
tt̄ hard functions are already summed over the helicities of the external particles and they
don’t allow for a direct inclusion of the top decays. The one-loop helicity amplitudes for
the production subprocess became recently available in [32]. By combining every helicity
configuration of the produced heavy pair together with the corresponding helicity for the
decay subprocess, we construct the required hard functions where the spin-correlations
are included. In particular, every helicity configuration {�} ⌘ (�1, . . . , �8) of the total
amplitude is expressed as a color-decomposed function of eight external momenta:

M{�}
ij, {a}(p1, . . . p8, mt

, µ
f

) =
X

I

M{�}
ij, I

(p1, . . . p8, mt

, µ
f

)(cij

I

){a} , (16)

7

M{�}
ij =

X

�t,�t̄

MP (ij ! t�t t̄�t̄)MD(t�t ! W+b)MD(t̄�t̄ ! W�b̄)
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Approximate NNLO

‣ Hard functions (NEW): computed 1-loop modified hard functions where the tops are decayed (in NWA)	



!

!

‣ Soft functions: 1-loop soft functions in PIM and 1PI do not change (Note: in NWA no soft-gluon connections 
between production and decay) [Ahrens, Ferroglia, Neubert, Pecjak, Yang, ’10, ‘11]	



‣ RG-equations:	



!

‣ use two loop anomalous dimensions for massive partons computed by [Ferroglia, Neubert, Pecjak, 
Yang 09’]	



‣ obtain approximate NNLO contributions by re-expanding resummation formula at fixed-order	



‣ obtain the correct coefficients of the plus-distributions terms

where Lm = ln(µ2/m2
t̃
1

) and L4 = ln(1 + s4/m
2
t̃
1

).
Since the hard and soft functions are known up to NLO, is easy to determine the NLO

coe�cient in the expansion of c̃ in powers of ↵s: suppressing the arguments and subscripts
one has

c̃ = ↵2
s


c̃(0) +

↵s

4⇡
c̃(1) +

⇣↵s

4⇡

⌘2

c̃(2) +O(↵3
s)

�
, (39)

where

c̃(0) = Tr
⇥
H(0)s̃(0)

⇤
, c̃(1) = Tr

⇥
H(0)s̃(1)

⇤
+ Tr

⇥
H(1)s̃(0)

⇤
=

2X

j=0

c
(1)
j Lj . (40)

It is important to observe that the trace of the product of the LO hard function and NLO
soft function contains the dependence of c̃(1) on L, and therefore it gives rise to the plus
distributions.

In order to obtain the coe�cient c̃(2) one needs to know the hard and soft function at
NNLO:

c̃(2) = Tr
⇥
H (0)s̃(2)

⇤
+ Tr

⇥
H(1)s̃(1)

⇤
+ Tr

⇥
H(2)s̃(0)

⇤
=

4X

j=0

c
(2)
j Lj . (41)

The coe�cients c(2)i (i = 1, · · · , 4) and the scale dependent part of c(2)0 can be reconstructed
by exploiting the information coming from the RGE satisfied by the hard and soft functions.

The hard functions satisfy RGE of the form

d

d lnµ
H = �HH +H�†

H . (42)

In Eq. (42) the arguments of the function H and of the anomalous dimension matrix �H are
M, cos ✓, and µ in the PIM case and s0, t01, u

0
1, and µ in the 1PI case. The matrices �H are

identical to the ones derived in [24] for the top quark pair production, provided that the top
quark mass mt is replaced by the top squark mass mt̃

1

everywhere, and that one expresses the
Mandelstam invariants in terms of M and cos ✓ in PIM kinematics, and s0, t01 and u0

1 in 1PI
kinematics. By employing the same notation of [20,21], one can split the anomalous dimension
up to two loop orders as follows

�PIM
H (M, cos ✓,↵s) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �h (M, cos ✓,↵s) ,

�1PI
H (s0, t01, u

0
1,↵s) = �cusp(↵s)

✓
ln

s0

µ2
� i⇡

◆
+ �h (s0, t01, u

0
1,↵s) , (43)

where �cusp is equal CF�cusp in the quark annihilation channel and CA�cusp in the gluon fusion
channel; �cusp represents the universal cusp anomalous dimension. The matrices �h, which do
not contain scale logarithms, can be obtained from the results in [20, 21] for the top quark
pair production case and adapted to the stop pair production case as explained above.

12

d

d lnµ
s̃{PIM,1PI} = �†

s {PIM,1PI}s̃{PIM,1PI} + s̃{PIM,1PI}�s {PIM,1PI}

where (cij

I

){a} are indipendent color structures which represent orthogonal basis vectors in
the space of color-singlet amplitudes and {a} ⌘ (a1, a2, a3, a4) is the set of color indices
relative to the external colored particles which can be in the fundamental or adjoint repre-
sentation. In this particular case, where the decay is added at tree-level, the color indices
carried by the b quarks are equivalent to the color indices of the top quarks from which
they are decaying, therefore a3 = a

t

and a4 = a
t̄

. Explicitly we choose the color basis as

(cqq̄

1 ){a} = �
a1a2�a3a4 , (cqq̄

2 ){a} = tc
a2a1

tc
a3a4

,

(cgg

1 ){a} = �a1a2�
a3a4 , (cgg

2 ){a} = ifa1a2c tc
a3a4

, (cgg

3 ){a} = da1a2c tc
a3a4

. (17)

In order to construct the hard function matrices we need to subtract the IR poles from the
QCD amplitudes, this is done by following the procedure in [33].

Mren, {�}
ij, {a} ⌘ lim

✏!0
Z�1

ij

(✏)M{�}
ij, {a}(✏) = 4⇡↵

s

h

Mren (0), {�}
ij, {a} +

↵
s

4⇡
Mren (1), {�}

ij, {a} + . . .
i

, (18)

where the IR poles are removed by the matrices Z�1
ij

(✏) [34, 35].
The hard function matrices have a perturbative expansion in ↵

s

H
ij

= ↵2
s

1

d
R

⇣

H
(0)
ij

+
↵

s

4⇡
H

(1)
ij

+ . . .
⌘

, (19)

where d
R

= N for the qq̄ channel and d
R

= N2 � 1 for the gg channel. The matrix
elements H

IJ

(for semplicity we drop the subscript ij labelling the production channel)
can be expressed in terms of the renormalized color-decomposed QCD amplitudes as

H(0)
IJ

=
1

4

X

{�}

⇣

Mren (0) {�}
I

⌘⇤ ⇣
Mren (0) {�}

J

⌘

, (20)

H(1)
IJ

=
1

4

X

{�}

h⇣

Mren (0) {�}
I

⌘⇤ ⇣
Mren (1) {�}

J

⌘

+
⇣

Mren (1) {�}
I

⌘⇤ ⇣
Mren (0) {�}

J

⌘i

, (21)

where we summed over all possible external helicities. After the inclusion of the tree-level
decays, the hard functions H

ij

(p1, . . . , p8, mt

, µ
f

) are functions of the external momenta
subject to the constraints in Eqs. (14), (15). We checked our results in di↵erent ways.
We compared the hard functions for the production subprocess constructed from helicity
amplitudes to the hard functions computed in [27] and we found numerical agreement. We
have also checked that by tracing in color space the matrix multiplications of the one-loop
hard functions with the corresponding tree-level soft functions we reproduce the numerical
results for the NLO squared amplitudes.

Since we are working in the NWA the soft functions SPIM, S1PI are not changed by the
inclusion of the tree-level top decays, therefore we make use of the known results for the
PIM and 1PI NLO soft functions which are available in the litarature. The calculation of
the PIM soft functions at NLO was carried out in [27] while the results for the 1PI soft
functions can be found in [29].

8

2.3 Structure of the hard-scattering kernels

The hard H
ij

and soft S
ij

functions satisfy some renormalization-group equations (RGEs)
whose precise form was derived in [27] for the PIM case and in [29] for 1PI. The relevant
two- and three-loop anomalous dimensions entering the RGE were computed in a series of
papers [35–37]. Between those, particular importance assume the two loop soft anomalous
dimension for massive partons [35] which is a key ingredient of this approach. Once that
the NLO hard and soft functions are available, it is possible to exploit the information
coming from the RGE to derive fixed-order approximate O(↵2

s

) expressions for the hard-
scattering kernels. The procedure to obtain approximate NNLO results from the NNLL
resummation formula was described in detail in [27, 29]. We are not going to repeat the
derivation here, instead we will focus on the results of this procedure that are relevant for
our case. In general the NNLO hard-scattering kernels have the following expansion in
terms of hard and soft functions

C(2)
ij

= Tr
h

H
(1)
ij

S
(1)
ij

i

+ Tr
h

H
(0)
ij

S
(2)
ij

i

+ Tr
h

H
(2)
ij

S
(0)
ij

i

, (22)

where only the first term on the r.h.s. of Eq. (22) is known exactly. As for the second term,

only the logarithmic parts of S(2)
ij

are known completely and they can be obtained by solving
the RGE for the soft functions at O(↵2

s

). In principle also the complete scale dependent

parts of H(2)
ij

, relative to the third term in the sum, can be computed via RGE. We follow
the choice made in [29] to drop these terms since they are ill defined and including them
could introduce an artificial reduction of the scale dependence.

In momentum space the NNLO hard-scattering kernels in Eq. (7), assume the following
structure in the case of PIM kinematics

C(2)
PIM(z, p1, . . . , p8, mt

, µ
f

) =
3

X

m=0

D(2)
PIM, m

(z, p1, . . . , p8, mt

, µ
f

)P
m

(z)

+ Q(2)
PIM, 0(p1, . . . , p8, mt

, µ
f

)�(1 � z) + R(2)
PIM(z, m

t

, µ
f

) , (23)

while in the case of 1PI kinematics we have

C(2)
1PI(s4, p1, . . . , p8, mt

, µ
f

) =
3

X

m=0

D(2)
1PI, m(s4, p1, . . . , p8, mt

, µ
f

)P̄
m

(s4)

+ Q(2)
PIM, 0(p1, . . . , p8, mt

, µ
f

)�(s4) + R(2)
1PI(s4, mt

, µ
f

) . (24)

The expressions of the coe�cients multiplying the plus distribution to O(↵2
s

), D(2)
PIM, m

and D(2)
1PI, m where m = 0, . . . , 3, are known exactly and they depend on the momenta of

the external particles p1, . . . , p8, on the variables z and s4 respectively for PIM and 1PI
kinematics, on the top mass m

t

and on the scale µ
f

. The � coe�cients are only partly
known. To these terms would contribute the constant pieces of the two-loop soft functions

9
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Monte Carlo Implementation

2.3 Structure of the hard-scattering kernels

The hard H
ij

and soft S
ij

functions satisfy some renormalization-group equations (RGEs)
whose precise form was derived in [27] for the PIM case and in [29] for 1PI. The relevant
two- and three-loop anomalous dimensions entering the RGE were computed in a series of
papers [35–37]. Between those, particular importance assume the two loop soft anomalous
dimension for massive partons [35] which is a key ingredient of this approach. Once that
the NLO hard and soft functions are available, it is possible to exploit the information
coming from the RGE to derive fixed-order approximate O(↵2

s

) expressions for the hard-
scattering kernels. The procedure to obtain approximate NNLO results from the NNLL
resummation formula was described in detail in [27, 29]. We are not going to repeat the
derivation here, instead we will focus on the results of this procedure that are relevant for
our case. In general the NNLO hard-scattering kernels have the following expansion in
terms of hard and soft functions

C(2)
ij

= Tr
h

H
(1)
ij

S
(1)
ij

i

+ Tr
h

H
(0)
ij

S
(2)
ij

i

+ Tr
h

H
(2)
ij

S
(0)
ij

i

, (22)

where only the first term on the r.h.s. of Eq. (22) is known exactly. As for the second term,

only the logarithmic parts of S(2)
ij

are known completely and they can be obtained by solving
the RGE for the soft functions at O(↵2

s

). In principle also the complete scale dependent

parts of H(2)
ij

, relative to the third term in the sum, can be computed via RGE. We follow
the choice made in [29] to drop these terms since they are ill defined and including them
could introduce an artificial reduction of the scale dependence.

In momentum space the NNLO hard-scattering kernels in Eq. (7), assume the following
structure in the case of PIM kinematics

C(2)
PIM(z, p1, . . . , p8, mt

, µ
f

) =
3

X

m=0

D(2)
PIM, m

(z, p1, . . . , p8, mt

, µ
f

)P
m

(z)

+ Q(2)
PIM, 0(p1, . . . , p8, mt

, µ
f

)�(1 � z) + R(2)
PIM(z, m

t

, µ
f

) , (23)

while in the case of 1PI kinematics we have

C(2)
1PI(s4, p1, . . . , p8, mt

, µ
f

) =
3

X

m=0

D(2)
1PI, m(s4, p1, . . . , p8, mt

, µ
f

)P̄
m

(s4)

+ Q(2)
PIM, 0(p1, . . . , p8, mt

, µ
f

)�(s4) + R(2)
1PI(s4, mt

, µ
f

) . (24)

The expressions of the coe�cients multiplying the plus distribution to O(↵2
s

), D(2)
PIM, m

and D(2)
1PI, m where m = 0, . . . , 3, are known exactly and they depend on the momenta of

the external particles p1, . . . , p8, on the variables z and s4 respectively for PIM and 1PI
kinematics, on the top mass m

t

and on the scale µ
f

. The � coe�cients are only partly
known. To these terms would contribute the constant pieces of the two-loop soft functions

9

Cij = ↵2
s


C(0)

ij +
↵s

4⇡
C(1)

ij +
⇣↵s

4⇡

⌘2
C(2)

ij +O(↵3
s)

�
,

C(2)
PIM(z,M,mt, cos ✓, µf ) =

3X

m=0

D(2)
PIM,m(z,M,mt, cos ✓, µf )Pm(z)

+Q(2)
PIM,0(M,mt, cos ✓, µf )�(1� z) +R(2)

PIM
Restore explicit dependence on 
outgoing particle momenta:  

‣ Monte Carlo phase-space integrator:	



‣ generate phase-space (momentum configurations)	



‣ we evaluate approximate contributions using momenta                 weights	



‣ bin weights according to observables constructed from final state momenta

{pi}

{pi}

Stable-tops:

Unstable-tops:
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Improved predictions

and

d�nLO
full = (�NLO

t

)�2
n⇣

d�(0)
tt̄

+ d�̃(1)
tt̄

⌘

✏ d�(0)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(1)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(0)

t!l

+
⌫lb

✏ d�(1)

t̄!l

�
⌫̄lb̄

o

(40)

d�NLO
full = (�NLO

t

)�2
n⇣

d�(0)
tt̄

+ d�(1)
tt̄

⌘

✏ d�(0)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(1)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(0)

t!l

+
⌫lb

✏ d�(1)

t̄!l

�
⌫̄lb̄

o

(41)

d�nNLO
full = (�NLO

t

)�2
n⇣

d�(0)
tt̄

+ d�(1)
tt̄

+ d�̃(2)
tt̄

⌘

✏ d�(0)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(1)

t!l

+
⌫lb

✏ d�(0)

t̄!l

�
⌫̄lb̄

+d�(0)
tt̄

✏ d�(0)

t!l

+
⌫lb

✏ d�(1)

t̄!l

�
⌫̄lb̄

o

. (42)

Here, d�(0,1)
tt̄

, d�(0,1)

t!l

+
⌫lb

and �(0,1)

t̄!l

�
⌫̄lb̄

are the standard LO and NLO di↵erential production
cross-sections and partial widths. The approximate-(N)NLO corrections to the production

subprocess are denoted by d�̃(1)
tt̄

(d�̃(2)
tt̄

) and can be obtained from either the 1PI or PIM
hard-scattering kernels. When including the NLO corrections to the top or anti-top decays
as well as in the production, the width of the top ought to be treated in a away such
that, when integrating over the full phase-space of the top decay products, the inclusive
cross-section for the production of a tt̄-pair multiplied by a branching fraction is recovered.
At NLO (and nNLO??? ) we adopt the treatment detailed in [12,13] and expand the NLO
top width, keeping only terms in the di↵erential cross-section that constitute a strict NLO
correction. This means that in the above equations we replace �NLO

t

! �LO
t

in the prefactor
and at the same time modify the Born-level di↵erential cross-section by

d�(0)
tt̄

! d�(0)
tt̄

✓

1 � 2
�NLO

t

� �LO
t

�LO
t

◆

, (43)

where the factor of two comes from the fact that we have two top quarks decaying.
Given that we are using RG-improved scattering kernels for distributions where their

respective factorization formulas are formally not necessarily valid, it is vital to be able to
(a) have a way of predicting where the RG-improved results can be trusted, and (b) provide
the latter with a realistic uncertainty. For (a) the strongest check comes from critically
comparing the full NLO results with the improved LO results, nLO. To provide a realistic
uncertainty estimate we always take the envelope of the improved predictions made by both
PIM and 1PI. Once again, critically comparing this way of estimating the uncertainty bands
for nLO to those of the full NLO, allows us to tell when and where the uncertainties for
our nNLO results are reasonable. What about envelope of implementations??

15

Approx-NNLO for the production subprocess and NLO for decay

Approximate-NLO	


(nLO)

NLO

Approximate-NNLO	


(nNLO)
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Validation procedure: nLO vs NLO
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Figure 1: Transverse momentum of reconstructed top quark for LHC8. Without cuts
(solid), with analysis cuts (dashed). Production corrections only.

3 Results

3.1 Total cross section

In this subsection we asses the quality of the approximation by analyzing the tt̄ total cross
section. We compare the n(N)LO vs the (N)NLO results taking into account the scale
uncertainties. Through this subsection we use MSTW2008 NLO PDFs [43] and as top
mass m

t

= 173.3 GeV. The scale variation of the cross sections is obtained by setting the
factorization and the renormalization scales equal to each other, µ

f

= µ
R

= µ, and by
looking at the predictions for di↵erent values of this single scale, in particular we choose
µ = {m

t

/2, m
t

, 2m
t

}.

3.2 ‘Stability/Universality’ of resummation

3.3 Tevatron, LHC8 and LHC14 results

• here we can include the NLO top decays
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Figure 2: Invariant mass of reconstructed top-pair system for LHC8. Without cuts (solid),
with analysis cuts (dashed). Production corrections only.

4 Conclusions

5 Acknowledgements
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‣ Reconstructed invariant mass and pT 
distributions	



‣ Production corrections only (LO decay)	



‣ Validation of the approximation	



‣ Cuts:

Surprisingly PIM seems to perform 
better than 1PI in both cases!

arbitrary observables. Thus, we have to investigate the universality of the approximate
terms obtained using the two di↵erent kinematics. Furthermore, the impact of cuts that
might be applied in a realistic analysis has to be considered as well.

To get an idea of the latter, we will apply a jet algorithm and require that the event
has a b jet J

b

and a b̄ jet J
b̄

. As an example we have used the k
T

cluster algorithm with
the resolution parameter set to R = 0.7, but obviously any other jet definition would be
possible. All observables we study will be constructed from the momenta of the final-state
objects J

b

, J
b̄

and the decay products of the W bosons. We will only consider the decay
W+ ! e+ ⌫ and W� ! e� ⌫̄ and sometimes assume the the W bosons can be reconstructed
fully from their decay products. In particular, the momentum of the resonstucted top is
defined as p(t) ⌘ p(W+) + p(J

b

), with an anlaogous expression for the reconstructed anti-
top. We will also study the impact of applying some additonal standard cuts on the
transverse momenta p

T

, and transverse (missing) energies E
T

. The precise definition of
these cuts is as follows

p
T

(J
b

) > 15 GeV p
T

(J
b̄

) > 15 GeV (44)

E
T

(e+) > 15 GeV E
T

(e�) > 15 GeV E/
T

> 20 GeV

These cuts are meant as an illustration only. They can easily be changed and in particular
cuts on the rapidity can be added.

To study the dependence of the predictions on the kinematics applied, we start by
considering in the left panel of Figure 2 the distribution of the invariant mass of the
reconstructed top pair M(t, t̄) ⌘ M(W+, W�, J

b

, J
b̄

). The appropriate kinematics for this
observable is PIM, but we will also use the ’wrong’ kinematics 1PI. We want to investigate
how well the approximate nLO result reproduces the full NLO corrections to the production
of the top pair. Note that the NLO corrections to the decay are not a↵ected and, hence,
will be left out in this comparison. Thus, in Figure 2 we show the comparison of the nLO
results d�nLO

prod. obtained with PIM (green) and 1PI (blue) to the full NLO result d�NLO
prod.

(red). In both cases the decay of the (anti-)top is included at leading order only and we
are using MSTW 08NLO [44] parton distribution functions and set µ

F

= µ
R

= m
t

.
The main message is that the approximate results for both kinematics are in reasonably

good agreement with the exact results and the application of cuts does not have a negative
e↵ect on this agreement. Actually in this case it turns out that the agreement is even
better if cuts are applied (dashed curves).

As expected, for the invariant mass of the top pair the PIM results are slightly bet-
ter than the 1PI results. We now repeat this comparison for the transverse momentum
distribution of the reconstructed top quark p

T

(t) ⌘ p
T

(W+, J
b

), where 1PI is the appro-
priate kinematics. In the right panel of Figure 2 we showa gain the comparison of d�nLO

prod.

obtained with 1PI and PIM to d�NLO
prod.. Once more, the approximations using both kine-

matics work well, with and without applying cuts. What is somewhat surprising is that
the ’wrong’ kinematics, PIM, gives better agreement with the full NLO results than the
’right’ kinematics, 1PI.

To summarize these considerations we can state that the bulk of the NLO corrections
to the production obtained using approximate results is independent of the kinematics

18
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Figure 4: M(W+, W�, J
b

, J
b̄

) (left) and p
T

(W+, J
b

) (right) distributions for LHC, with
analysis cuts. The NLO uncertainty band is shown in all plots in red. The green bands
are the nLO predictions, with PIM predictions shown in the top two plots whilst those of
1PI shown in the bottom two.

and red band respectively, These bands have been obtained by varying m
t

/2  µ  2m
t

.
Finally, in these plots we give an indication of the quality of the d�nLO

full approximation. We
show the corresponding bands obtained in the same way as for d�nNLO

full as green dashed lines.
These bands are to be compared to the red bands to assess the quality of the approximation
at NLO and. The quality of this approximation gives some indirect evidence on the quality
of the d�nNLO

full approximation.
In Figure 5 we present our final results for our two standard variables M(W+, W�, J

b

, J
b̄

)
and p

T

(W+, J
b

). As expected the scale dependence is reduced going from LO to NLO.
There is also a very large overlap between the red d�NLO

full and green dashed d�nLO
full bands.

Finally, the bands of the approximate nNLO results, d�nNLO
full are mostly within the NLO

bands. This suggests that the perturbative expansion is under control and there are no
unexpected large corrections in going from NLO to NNLO.

The picture is very much the same for other observables. As an example we consider the

21

Validation procedure: nLO vs NLO

Uncertainty estimate: take envelope of scale variation of {PIM,1PI} for every 
distribution
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Total cross section

‣ Complete agreement with [Ahrens et al.] for the no-cuts case (consistency-check)	



‣ Compare approx-NNLO (nNLO) corrections with exact NNLO [Top++: Bärnreuther, 
Czakon, Fiedler, Mitov ’12, ’13]	



‣ LHC 8 and 14 TeV, MSTW08 NLO PDFs

LHC 14 TeV Partonic channel
↵

s

corrections qq̄ gg

�NLO [pb] {-13.75, 9.458, 22.47} {150.9, 279.1, 328.7}
�PIM [pb] {-11.61, 6.342, 16.61} {102.3, 238.5, 293.2}

�PIMFPS
[pb] {-14.13, 10.17, 23.73} {92.52, 299.3, 382.8}

�1PI [pb] {-17.95, 7.415, 21.69} {77.34, 289.2, 376.3}
↵2

s

corrections qq̄ gg

�NNLO [pb] {7.023, 5.438, 9.393} {19.25, 103.2, 178.2}
�PIM [pb] {-3.875, -0.1700, 1.779} {-31.84, 20.24, 76.87}

�PIMFPS
[pb] {-2.390, 1.440, 5.561} {-25.22, 64.57, 170.6}

�1PI [pb] {-3.320, -1.233, 1.768} {-66.72, 10.80, 107.0}
↵2

s

corrections Total contribution

�NNLO [pb] {33.79, 105.0, 153.7}
�PIM [pb] {-35.70, 20.13, 78.75}

�PIMFPS
[pb] {-27.61, 66.01, 176.2}

�1PI [pb] {-70.04, 9.566, 108.7}
Cross section [pb]

(� ± ��
µ

)NLO [pb] 884.5+106.8
�105.8

(� ± ��
µ

)NNLO [pb] 989.4+35.6
�57.0

(� ± ��
µ

)PIMnNLO
[pb] 904.6+51.0

�47.1

(� ± ��
µ

)PIMFPS nNLO
[pb] 950.5+13.2

�0

(� ± ��
µ

)1PInNLO
[pb] 894.0+27.2

�6.6

Table 2: Corrections at order ↵
s

and ↵2
s

to the total cross section for the LHC at 14 TeV.
The three numbers correspond to the di↵erent choices of the scale µ = {m

t

/2, m
t

, 2m
t

}.
The NNLO cross sections are produced with the program Top++ [21]. The PIM and
1PI cross sections are obtained using our code and are in agreement with the standard
results presented in [27,29,44]. The PIMFPS correspond to the PIM hard-scattering kernel
integrated over the NLO full phase space as explained in section 2.4.1. All the numbers
are obtained by using MSTW 2008 NLO PDFs.

27

‣ Incomplete overlap of uncertainty bands at the LHC	



‣ Approximate-NNLO (nNLO) corrections not perfect, but decent approximation 
(at the Tevatron the situation is a bit worse)	



‣ The approximation can be improved by including 2-loop hard and soft functions

LHC 8 TeV
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s
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Figure 1: Graphical representation of the cross sections reported in Table 1 including the
error bands for the theoretical scale uncertainty. We show the results for the LHC 8 TeV,
LHC 14 TeV and the Tevatron. The dark red bands refer to the NLO and nLO results
while the dark green bands refer to the NNLO and nNLO results. The nNLO cross sections
are matched with fixed-order NLO calculations.

The dark green bands refer to the NNLO and nNLO results in PIM and 1PI kinematics.
The PIM and 1PI nNLO central values are very close and consistent with each other
independently of the collider. Unfortunately, both PIM and 1PI are well below the NNLO
central cross sections. Nevertheless, at the LHC there is a quite large overlap between the
NNLO lower uncertainty bands and the nNLO upper bands. At the Tevatron the overlap
is marginal and involve only the edge of the bands. The fact that the nNLO predictions
are consistently lower than the NNLO ones could be explained since a large part of the
corrections that would enter the delta terms in Eqs. (23), (24) are missing, in particular
the finite contributions of the two-loop hard and soft functions as mentioned in 2.3. By
comparing with the nLO predictions, where the delta terms are fully known, we notice a
better agreement between nLO and NLO. When the delta contributions will be available,
we expect that the approximation nNLO vs NNLO will be as good as the nLO vs NLO
case. This discrepancy may also originate in the phase space. Integrating the PIM and
1PI kernels over a full phase space instead of an approximate one could lead to a positive
contribution to the cross sections. We are not investingating this second possibility in the
present work, but we might address this point in the near future.

From the comparison between the nNLO and NNLO results for the total cross sec-
tion we conclude that our di↵erential distributions would likely underestimate the NNLO
predictions for the same observables. When the fully di↵erential NNLO results will be
available, we expect to find an overlap between the uncertainty bands of the nNLO and
NNLO distributions.

3.2 Stability and universality of approximate results

In this subsection we study the reliability of our method for distributions. To do so, we
compare our approximate nLO results to full NLO results with the aim of obtaining a
procedure that gives a reliable error estimate for our approximate results.

We will use the PIM and/or the 1PI kinematics to obtain approximate expressions for

17
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Distributions with final state cuts
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Figure 5: Invariant mass of reconstructed top-pair system (left) and transverse momentum
of reconstructed top quark (right) LHC8 with analysis cuts.

rapidity of the reconstructed top in the top left panel of Figure 6. One would expect that
1PI is the appropriate kinematics for this observables, but as for the transverse momentum
of the top, PIM kinematics gives very similar results. This is further evidence that the
bulk of the corrections is independent on the precise details of the kinematics. We can also
study generic observables that do not necessarily have a direct link to either the PIM or 1PI
kinematics. For example, we show in Figure 6 the angle between the two charged leptons
(top right panel), which is interesting in the study of angluar correlations, the invariant
mass of the lepton-jet system (bottom left panel), which might be a useful observable to
measure the top mass, and the transverse momentum of the b-jet (bottom right panel). For
all these observable the generic features are the same in that the nNLO bands are mostly
within the NLO bands and that the nLO approximation has a very large overlap with the
full NLO band.

4 Future improvements and conclusions

5 Acknowledgements

Simon Badger, Andrea Ferroglia,
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• Uncertainty bands of nNLO: scale variation+kinematics (envelope of PIM and 1PI)	


!

• Good perturbative behaviour, reduction of theoretical uncertainty

arbitrary observables. Thus, we have to investigate the universality of the approximate
terms obtained using the two di↵erent kinematics. Furthermore, the impact of cuts that
might be applied in a realistic analysis has to be considered as well.

To get an idea of the latter, we will apply a jet algorithm and require that the event
has a b jet J

b

and a b̄ jet J
b̄

. As an example we have used the k
T

cluster algorithm with
the resolution parameter set to R = 0.7, but obviously any other jet definition would be
possible. All observables we study will be constructed from the momenta of the final-state
objects J

b

, J
b̄

and the decay products of the W bosons. We will only consider the decay
W+ ! e+ ⌫ and W� ! e� ⌫̄ and sometimes assume the the W bosons can be reconstructed
fully from their decay products. In particular, the momentum of the resonstucted top is
defined as p(t) ⌘ p(W+) + p(J

b

), with an anlaogous expression for the reconstructed anti-
top. We will also study the impact of applying some additonal standard cuts on the
transverse momenta p

T

, and transverse (missing) energies E
T

. The precise definition of
these cuts is as follows

p
T

(J
b

) > 15 GeV p
T

(J
b̄

) > 15 GeV (44)

E
T

(e+) > 15 GeV E
T

(e�) > 15 GeV E/
T

> 20 GeV

These cuts are meant as an illustration only. They can easily be changed and in particular
cuts on the rapidity can be added.

To study the dependence of the predictions on the kinematics applied, we start by
considering in the left panel of Figure 2 the distribution of the invariant mass of the
reconstructed top pair M(t, t̄) ⌘ M(W+, W�, J

b

, J
b̄

). The appropriate kinematics for this
observable is PIM, but we will also use the ’wrong’ kinematics 1PI. We want to investigate
how well the approximate nLO result reproduces the full NLO corrections to the production
of the top pair. Note that the NLO corrections to the decay are not a↵ected and, hence,
will be left out in this comparison. Thus, in Figure 2 we show the comparison of the nLO
results d�nLO

prod. obtained with PIM (green) and 1PI (blue) to the full NLO result d�NLO
prod.

(red). In both cases the decay of the (anti-)top is included at leading order only and we
are using MSTW 08NLO [44] parton distribution functions and set µ

F

= µ
R

= m
t

.
The main message is that the approximate results for both kinematics are in reasonably

good agreement with the exact results and the application of cuts does not have a negative
e↵ect on this agreement. Actually in this case it turns out that the agreement is even
better if cuts are applied (dashed curves).

As expected, for the invariant mass of the top pair the PIM results are slightly bet-
ter than the 1PI results. We now repeat this comparison for the transverse momentum
distribution of the reconstructed top quark p

T

(t) ⌘ p
T

(W+, J
b

), where 1PI is the appro-
priate kinematics. In the right panel of Figure 2 we showa gain the comparison of d�nLO

prod.

obtained with 1PI and PIM to d�NLO
prod.. Once more, the approximations using both kine-

matics work well, with and without applying cuts. What is somewhat surprising is that
the ’wrong’ kinematics, PIM, gives better agreement with the full NLO results than the
’right’ kinematics, 1PI.

To summarize these considerations we can state that the bulk of the NLO corrections
to the production obtained using approximate results is independent of the kinematics

18

‣ Use MSTW2008 NLO/NNLO PDFs	



‣ Cuts:	



!

‣ Top decay included in NWA at NLO
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Distributions with final state cuts
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Figure 6: Generic observables for LHC8 with analysis cuts.
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Conclusions & Outlook

‣ We have adapted (including decay) and implemented known PIM and 1PI n(N)LO 
contributions in a fully-differential code, including top decays (at NLO) and spin-
correlations	



‣ We studied fully differential distributions	



‣ Reduction of theoretical uncertainty (scale + kinematics)	



‣ Formally we have not proved anything, but it seems to work	



!

‣ Compute charge asymmetry at the LHC	



‣ Adapt (including decay) and implement virtual + soft approximation [Ferroglia, Pecjak, 
Yang’13; Ferroglia, Marzani, Pecjak, Yang ‘13]	



‣ Mismatch in production/decay corrections	



‣ Include NNLO decay corrections [Gao, Li, Zhu ’12; Brucherseifer, Caola, Melnikov ‘13]	
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Differential checks
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‣ Final state patrons clustered into jets	



‣ Tops reconstructed via b-jet and lepton 
momenta	



‣ No cuts on final state applied (to recover 
total cs)	



‣ Tops decays only at LO

‣ Full agreement at differential level with 
[Ahrens et al.] 	



‣ Good perturbative behaviour
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Approximate NNLO formulas
‣ H and S satisfy RG equations of the form:	



!

!

‣ The two loop anomalous dimensions including massive partons were computed by [Ferroglia, Neubert, 
Pecjak, Yang 09’]	



‣ The large logarithms could be resummed to all-orders by solving the RG equations for H and S, but here 
we follow a different possibility. The resummed formulas can be re-expanded to obtain fixed-oder 
formulas.	



‣ The perturbative expansion of the hard-scattering kernels reads	



!

!

!

!

!

‣ By knowing the analytical expressions for H and S at NLO in both kinematics, we can solve explicitly the 
RG equations for H and S at NNLO	



where Lm = ln(µ2/m2
t̃
1

) and L4 = ln(1 + s4/m
2
t̃
1

).
Since the hard and soft functions are known up to NLO, is easy to determine the NLO

coe�cient in the expansion of c̃ in powers of ↵s: suppressing the arguments and subscripts
one has

c̃ = ↵2
s


c̃(0) +

↵s

4⇡
c̃(1) +

⇣↵s

4⇡

⌘2

c̃(2) +O(↵3
s)

�
, (39)

where

c̃(0) = Tr
⇥
H(0)s̃(0)

⇤
, c̃(1) = Tr

⇥
H(0)s̃(1)

⇤
+ Tr

⇥
H(1)s̃(0)

⇤
=

2X

j=0

c
(1)
j Lj . (40)

It is important to observe that the trace of the product of the LO hard function and NLO
soft function contains the dependence of c̃(1) on L, and therefore it gives rise to the plus
distributions.

In order to obtain the coe�cient c̃(2) one needs to know the hard and soft function at
NNLO:

c̃(2) = Tr
⇥
H (0)s̃(2)

⇤
+ Tr

⇥
H(1)s̃(1)

⇤
+ Tr

⇥
H(2)s̃(0)

⇤
=

4X

j=0

c
(2)
j Lj . (41)

The coe�cients c(2)i (i = 1, · · · , 4) and the scale dependent part of c(2)0 can be reconstructed
by exploiting the information coming from the RGE satisfied by the hard and soft functions.

The hard functions satisfy RGE of the form

d

d lnµ
H = �HH +H�†

H . (42)

In Eq. (42) the arguments of the function H and of the anomalous dimension matrix �H are
M, cos ✓, and µ in the PIM case and s0, t01, u

0
1, and µ in the 1PI case. The matrices �H are

identical to the ones derived in [24] for the top quark pair production, provided that the top
quark mass mt is replaced by the top squark mass mt̃

1

everywhere, and that one expresses the
Mandelstam invariants in terms of M and cos ✓ in PIM kinematics, and s0, t01 and u0

1 in 1PI
kinematics. By employing the same notation of [20,21], one can split the anomalous dimension
up to two loop orders as follows

�PIM
H (M, cos ✓,↵s) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �h (M, cos ✓,↵s) ,

�1PI
H (s0, t01, u

0
1,↵s) = �cusp(↵s)

✓
ln

s0

µ2
� i⇡

◆
+ �h (s0, t01, u

0
1,↵s) , (43)

where �cusp is equal CF�cusp in the quark annihilation channel and CA�cusp in the gluon fusion
channel; �cusp represents the universal cusp anomalous dimension. The matrices �h, which do
not contain scale logarithms, can be obtained from the results in [20, 21] for the top quark
pair production case and adapted to the stop pair production case as explained above.
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d

d lnµ
s̃{PIM,1PI} = �†

s {PIM,1PI}s̃{PIM,1PI} + s̃{PIM,1PI}�s {PIM,1PI}

4

FIG. 2: Vertex correction to the scattering amplitude in the
full theory.
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FIG. 3: Vertex correction in SCET.

particle can be written as

pµ
i =

1

2
nµ

i (n̄i · pi) +
1

2
n̄µ

i (ni · pi) + pµ
i,⊥. (3)

If ni is chosen to be exactly along the direction of pi, then
pµ

i,⊥ = 0. The particles are energetic, with n̄i · pi ∼ Q.
In the case of only two energetic particles, one can work
in the Breit frame where the particles are back-to-back,
with n̄1 = n2 and n̄2 = n1, so that one only deals with
two null vectors n1 and n̄1, conventionally called n and
n̄.

Consider a radiative correction graph to the tree-level
process Fig. 1, such as the vertex correction shown in
Fig. 2 in the full theory. The gauge boson exhanged
between the two fermion lines still has virtuality of or-
der Q2, and so the diagram behaves like the graph in
Fig. 3, with the highly virtual gauge boson shrunk to a
point. As is well-know, there are several different mo-
mentum regions which contribute to the loop integral
in Fig. 2. If the components of the gauge boson loop
momentum are of order Q, then the gauge boson has
virtuality of order Q2. This contribution is not present
in SCET, and is included in the one-loop matching co-
efficients at the scale Q. The other regions, which are
included in SCET, are when the gauge boson is collinear
to particle 1 (n1-collinear gauge boson), to particle 2 (n2-
collinear gauge bosons), or is ultrasoft. The SCET the-
ory thus contains ni-collinear gauge bosons for each par-
ticle direction, i = 1, . . . , r, with momenta scaling like
pi, denoted by Ani,pi

with labels, as well as ultrasoft

gauge bosons denoted by A, with no labels, which couple
to all the particles, analogous to the soft and ultrasoft
fields introduced in NRQCD [28]. We work in the regime
where the kinematic variables such as s, t are of order
Q2, and the invariant masses of the final states are much
smaller than Q2. The SCET power counting parameter
is λ = M/Q. The formalism is valid for observables that
can be constructed out of variables in the effective the-
ory, for which the reduction to effective theory vertices
such as in Fig. (3) is valid. In particular, it is valid for
jet observables and top decay observables at the LHC.

Notation: We use the abbreviations

LM = log
M2

µ2
, Lm = log

m2

µ2
, LQ = log

Q2

µ2

Ls = log
−s

µ2
, Lt = log

−t

µ2
, Lu = log

−u

µ2

Ls/t = log
s

t
= log(−s) − log(−t),

Lt/u = log
t

u
= log(−t) − log(−u),

Lut/s2 = log
ut

s2
= log(−u) + log(−t) − 2 log(−s). (4)

For scattering kinematics, s > 0, t < 0, and u < 0.
All logarithms arise in the form log(−x − i0+) for x =
s, t, u, so that log(−s − i0+) = log s − iπ. Similarly,
Ls/t = log(−s) − log(−t) = log(−s/t) − iπ, and Lt/s =
log(−t) − log(−s) = log(−t/s) + iπ. This procedure can
be used to find the branch cut of logarithms with negative
argument which occur in the subsequent formulæ.

III. EXPONENTIATION AND LOG-COUNTING

The exponentiation properties of Sudakov logarithms,
and the relation between the renormalization group re-
sults and those obtained by exponentiating fixed order
computations was discussed in CGKM2. This section sum-
marizes the results we need for our standard model cal-
culation.

The scattering amplitude A has an expansion of the
form1

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

αL2 αL α

α2L4 α2L3 α2L2 α2L α2

α3L6 . . .

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

1 For multi-particle scattering, A is actually a matrix of ampli-
tudes, and matrix ordering is important. We discuss the simpler
case of the Sudakov form factor, where A is a number. This is
sufficient to study the exponentiating and log power-counting we
need. The matrix case is discussed in Sec. VI.

[Chiu, Kelley, Manohar, 08’]

Logarithmic structure of the 
scattering amplitude for 

Sudakov problems
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where for PIM

Approximate NNLO formulas

Cij = ↵2
s


C(0)

ij +
↵s

4⇡
C(1)

ij +
⇣↵s

4⇡

⌘2
C(2)

ij +O(↵3
s)

�
,

defined through a summation over color indices as

hcI | cJi =
X

{a}

�
cI
�⇤
a
1

a
2

a
3

a
4

�
cJ
�
a
1

a
2

a
3

a
4

. (14)

This inner product is proportional but not equal to �IJ , so the basis vectors are orthogonal
but not orthonormal.

A factorization formula analogous to Eq. (12) for the top quark pair production was derived
employing SCET and Heavy-Quark E↵ective Theory (HQET) in [20]. A completely analogous
procedure can be followed to derive the formula for the top squark pair production.

The hard functions are obtained from the virtual corrections and are ordinary functions
of their arguments. The soft functions arise from the real emission of soft gluons and contain
distributions which are singular in the z ! 1 limit. Contributions of order ↵n

s to the soft
functions include terms proportional to plus distributions


lnm(1� z)

1� z

�

+

, (m = 0, · · · , 2n� 1) , (15)

as well as terms proportional to �(1�z). The plus distribution are defined through the relation

Z 1

0

dz


lnm(1� z)

1� z

�

+

g(z) ⌘
Z 1

0

dz
lnm(1� z)

1� z
[g(z)� g(1)] . (16)

Consequently, one finds that

Z 1

⌧

dz


lnm(1� z)

1� z

�

+

g(z) =

Z 1

⌧

dz
lnm(1� z)

1� z
[g(z)� g(1)]� g(1)

Z 1

⌧

dz
lnm(1� z)

1� z
. (17)

In particular, for the NLO and NNLO hard scattering kernels one has (dropping the parton
indices ij)

CPIM = ↵2
s


C

(0)
PIM +

↵s

4⇡
C

(1)
PIM +

⇣↵s

4⇡

⌘2

C
(2)
PIM +O(↵3

s)

�
, (18)

where

C
(1)
PIM = D

(1,PIM)
1


ln(1� z)

1� z

�

+

+D
(1,PIM)
0


1

1� z

�

+

+ C
(1,PIM)
0 �(1� z) +R(1,PIM)(z) ,

C
(2)
PIM = D

(2,PIM)
3


ln3(1� z)

1� z

�

+

+D
(2,PIM)
2


ln2(1� z)

1� z

�

+

+D
(2,PIM)
1


ln(1� z)

1� z

�

+

+D
(2,PIM)
0


1

1� z

�

+

+ C
(2,PIM)
0 �(1� z) +R(2,PIM)(z) . (19)

The functions D
(i)
j , C(i), and R(i) depend also on cos ✓,M, µf and on the heavy particles

masses. The coe�cients D(1)
i , C(1) and R(1) can in principle be obtained from results present

6

This would require a complete 2 loop 
calculation

[Ahrens et al. ’10, ‘11]
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Figure 3: Invariant mass of reconstructed top-pair system (left) and transverse momentum
of reconstructed top quark (right) for gg partonic channel at LHC8, without cuts (upper
bands) and with analysis cuts (lower bands). Production corrections only.

only the scale variation does usually underestimate the error. This is illustrated in Figure 4,
where we show a comparison of the standard NLO bands with approximate nLO bands
obtained for a fixed kinematic. Contrary to Figure 3, in Figure 4 we include all partonic
channels. The top panel shows the error obtained from using PIM and taking the envelope
from scale variation only, whereas in the bottom panel 1PI only is used. It is clear that in
particular the 1PI bands obtained solely from scale variation considerably underestimate
the theoretical error. However, if we take the envelope over both kinematic implementations
as well as the scale dependence, we get a more realistic indication of the uncertainty.

We have verified that this procedure works for generic observables in that the error band
obtained this way has a large overlap with the standard error band from scale variation of
the full NLO result. In Section 3.1 we have also seen that this procedure works well for
the total cross section. // comment on NNLO – fine tune with Alessandro’s text //

3.3 Di↵erential distributions for LHC8, LHC14 and Tevatron

In this section we will consider generic distributions including the decay with our standard
cuts applied. Our best predictions will be d�nNLO

full as defined in Eq. (42). This result
contains the exact NLO corrections for the production and the decay and approximate
NNLO corrections to the production. The band of these results (shown in green in the
figures of this section) is obtained by taking the envelope of the standard scale dependence
m

t

/2  µ  2m
t

and the variation over taking PIM and 1PI kinematics. We have seen
in Section 3.1 that using this procedure for the total cross section gives bands that have
an overlap with the full NNLO bands (obtained from standard scale variation) but are
generally somewhat smaller. Thus a certain care has to be taken when interpreting these
bands as theoretical error.

We will also show the leading order results and the NLO results d�NLO
full as light brown
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Figure 3: Invariant mass of reconstructed top-pair system (left) and transverse momentum
of reconstructed top quark (right) for gg partonic channel at LHC8, without cuts (upper
bands) and with analysis cuts (lower bands). Production corrections only.

only the scale variation does usually underestimate the error. This is illustrated in Figure 4,
where we show a comparison of the standard NLO bands with approximate nLO bands
obtained for a fixed kinematic. Contrary to Figure 3, in Figure 4 we include all partonic
channels. The top panel shows the error obtained from using PIM and taking the envelope
from scale variation only, whereas in the bottom panel 1PI only is used. It is clear that in
particular the 1PI bands obtained solely from scale variation considerably underestimate
the theoretical error. However, if we take the envelope over both kinematic implementations
as well as the scale dependence, we get a more realistic indication of the uncertainty.

We have verified that this procedure works for generic observables in that the error band
obtained this way has a large overlap with the standard error band from scale variation of
the full NLO result. In Section 3.1 we have also seen that this procedure works well for
the total cross section. // comment on NNLO – fine tune with Alessandro’s text //

3.3 Di↵erential distributions for LHC8, LHC14 and Tevatron

In this section we will consider generic distributions including the decay with our standard
cuts applied. Our best predictions will be d�nNLO

full as defined in Eq. (42). This result
contains the exact NLO corrections for the production and the decay and approximate
NNLO corrections to the production. The band of these results (shown in green in the
figures of this section) is obtained by taking the envelope of the standard scale dependence
m

t

/2  µ  2m
t

and the variation over taking PIM and 1PI kinematics. We have seen
in Section 3.1 that using this procedure for the total cross section gives bands that have
an overlap with the full NNLO bands (obtained from standard scale variation) but are
generally somewhat smaller. Thus a certain care has to be taken when interpreting these
bands as theoretical error.

We will also show the leading order results and the NLO results d�NLO
full as light brown
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• Comparison of uncertainty bands between 
PIM-1PI envelope and full NLO for gg-channel 
only	



• Take the envelope of PIM and 1PI predictions 
for every distribution	



!

Validation procedure: nLO vs NLO
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where Lm = ln(µ2/m2
t̃
1

) and L4 = ln(1 + s4/m
2
t̃
1

).
Since the hard and soft functions are known up to NLO, is easy to determine the NLO

coe�cient in the expansion of c̃ in powers of ↵s: suppressing the arguments and subscripts
one has

c̃ = ↵2
s


c̃(0) +

↵s

4⇡
c̃(1) +

⇣↵s

4⇡

⌘2

c̃(2) +O(↵3
s)

�
, (39)

where

c̃(0) = Tr
⇥
H(0)s̃(0)

⇤
, c̃(1) = Tr

⇥
H(0)s̃(1)

⇤
+ Tr

⇥
H(1)s̃(0)

⇤
=

2X

j=0

c
(1)
j Lj . (40)

It is important to observe that the trace of the product of the LO hard function and NLO
soft function contains the dependence of c̃(1) on L, and therefore it gives rise to the plus
distributions.

In order to obtain the coe�cient c̃(2) one needs to know the hard and soft function at
NNLO:

c̃(2) = Tr
⇥
H (0)s̃(2)

⇤
+ Tr

⇥
H(1)s̃(1)

⇤
+ Tr

⇥
H(2)s̃(0)

⇤
=

4X

j=0

c
(2)
j Lj . (41)

The coe�cients c(2)i (i = 1, · · · , 4) and the scale dependent part of c(2)0 can be reconstructed
by exploiting the information coming from the RGE satisfied by the hard and soft functions.

The hard functions satisfy RGE of the form

d

d lnµ
H = �HH +H�†

H . (42)

In Eq. (42) the arguments of the function H and of the anomalous dimension matrix �H are
M, cos ✓, and µ in the PIM case and s0, t01, u

0
1, and µ in the 1PI case. The matrices �H are

identical to the ones derived in [24] for the top quark pair production, provided that the top
quark mass mt is replaced by the top squark mass mt̃

1

everywhere, and that one expresses the
Mandelstam invariants in terms of M and cos ✓ in PIM kinematics, and s0, t01 and u0

1 in 1PI
kinematics. By employing the same notation of [20,21], one can split the anomalous dimension
up to two loop orders as follows

�PIM
H (M, cos ✓,↵s) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �h (M, cos ✓,↵s) ,

�1PI
H (s0, t01, u

0
1,↵s) = �cusp(↵s)

✓
ln

s0

µ2
� i⇡

◆
+ �h (s0, t01, u

0
1,↵s) , (43)

where �cusp is equal CF�cusp in the quark annihilation channel and CA�cusp in the gluon fusion
channel; �cusp represents the universal cusp anomalous dimension. The matrices �h, which do
not contain scale logarithms, can be obtained from the results in [20, 21] for the top quark
pair production case and adapted to the stop pair production case as explained above.
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By knowing the evolution equation of the hard function and of the PDFs, and by employing
the scale invariance of the cross section, it is possible to derive the RGE satisfied by the soft
function. In PIM kinematics one finds [20]

d

d lnµ
s̃PIM

✓
ln

M2

µ2
,M, cos ✓, µ

◆
= �†

sPIMs̃PIM

✓
ln

M2

µ2
,M, cos ✓, µ

◆

+ s̃PIM

✓
ln

M2

µ2
,M, cos ✓, µ

◆
�sPIM . (44)

In the equation above the soft anomalous dimension �sPIM is given by

�̃sPIM = �

�cusp(↵s) ln

M2

µ2
+ 2�� (↵s)

�
1� �h (M, cos ✓,↵s) . (45)

In the equation above, the PDF anomalous dimension �� is defined through the large x limit
of the Altarelli-Parisi splitting functions

P (x) = 2�cusp(↵s)


1

1� x

�

+

+ 2��(↵s)�(1� x) . (46)

In 1PI kinematic, the Laplace transformed soft function obeys the following evolution
equation [21]

d

d lnµ
s̃1PI

✓
ln

s0

µ2
, s0, t01, u

0
1, µ

◆
= �†

s1PIs̃1PI

✓
ln

s0

µ2
, s0, t01, u

0
1, µ

◆

+ s̃1PI

✓
ln

s0

µ2
, s0, t01, u

0
1, µ

◆
�s1PI , (47)

with

�̃s1PI = �
"
�cusp(↵s) ln

s0

µ2
+ 2�� (↵s) + �cusp(↵s) log

s0m2
t̃
1

t01u
0
1

#
1� �h

�
s0, t01, u

0
1,mt̃

1

,↵s

�
. (48)

If the one-loop hard and soft matrices, evolution equations, and anomalous dimensions
up to two loops (three loop for the cusp anomalous dimension) are known, it is possible to
calculate the coe�cients of the positive powers of L in the expansion in Eq. (41) as well as
the scale dependent parts of the coe�cient proportional to L0.

5 Approximate NNLO Formulas

By employing the results described in the previous sections it is possible to obtain approximate
NNLO formulas for the hard scattering kernels. These formulas include the exact expressions
of the coe�cients multiplying the plus distributions up to NNLO, both in PIM and in 1PI
kinematics. The complete results for these coe�cients, written in terms of Passarino Veltman
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If the one-loop hard and soft matrices, evolution equations, and anomalous dimensions
up to two loops (three loop for the cusp anomalous dimension) are known, it is possible to
calculate the coe�cients of the positive powers of L in the expansion in Eq. (41) as well as
the scale dependent parts of the coe�cient proportional to L0.

5 Approximate NNLO Formulas

By employing the results described in the previous sections it is possible to obtain approximate
NNLO formulas for the hard scattering kernels. These formulas include the exact expressions
of the coe�cients multiplying the plus distributions up to NNLO, both in PIM and in 1PI
kinematics. The complete results for these coe�cients, written in terms of Passarino Veltman
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This is necessarily different than the “approximate NLO” formula one would deduce by drop-
ping the coefficient h(1,0) from (64), because it depends on µh, but if we set µh = M it is the
same, and it is for this reason that one can still say the NLL solution “resums logarithms of the
form ln(M/µf) to all orders”, although a more accurate statement would be that it “resums
logarithms of the form ln(µh/µf) to all orders”, which includes the possibility of other choices
such as µh = mt. Given this fact, it makes little sense to construct an approximate formula
for a quantity such as the hard function: if there are large logarithms, it is just as easy to sum
them to all orders as it is to construct the fixed-order expansion, and if the logarithms are not
large, there is no reason to include that subset of the higher-order corrections without the full
answer.

We can repeat the analysis above to compare the structure of approximate fixed-order
expansions and resummed formulas for the soft function. In this case the RG equation is non-
local, and to solve for the momentum-space soft function one uses the technique of Laplace
transforms [71]. The solution for the resummed momentum-space soft function is

S(ω, µf) = e−4S(µs,µf )+2aγs (µs,µf ) s̃ (∂η, µs)
1

ω

(
ω

µs

)2η e−2γEη

Γ(2η)
, (71)

where η = 2aΓ(µs, µf), and s̃ is the Laplace-transformed function, which satisfies the local RG
equation

d

d lnµ
s̃

(
ln

M2

µ2
,αs(µ)

)
= −

(
2Γcusp ln

M2

µ2
+ 2γs

)
s̃

(
ln

M2

µ2
,αs(µ)

)
. (72)

In this case, approximate formulas in fixed order are obtained by first constructing the solution
to s̃ using the local RG equation. To NNLO, we use the ansatz

s̃(L,αs(µ)) = 1 +
αs(µ)

4π

2∑

n=0

s(1,n)Ln +

(
αs(µ)

4π

)2 4∑

n=0

s(2,n)Ln + . . . , (73)

where we set s(0,0) = 1 for simplicity. The explicit solution to NNLO reads

s̃(L,αs(µ)) = 1 +
αs(µ)

4π

[
Γ0

2
L2 + Lγs

0 + s(1,0)
]

+

(
αs(µ)

4π

)2 [Γ2
0

8
L4 +

(
−
β0Γ0

6
+

Γ0γs
0

2

)
L3 +

1

2

(
Γ1 − β0γ

s
0 + (γs

0)
2 + Γ0s

(1,0)
)
L2

+ (γs
1 − β0s

(1,0) + γs
0s

(1,0))L+ s(2,0)
]
. (74)

To turn this into an approximate NNLO formula for the momentum-space soft function
S(ω, µf), one must take the limit µs = µf and derive replacement rules analogous to (38).
This is readily done using the expansion

1

ω

(
ω

µs

)2η

=
1

2η
δ(ω) +

∞∑

n=0

2n

n!
Dn(ω) η

n , (75)
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Table 1: Different approximation schemes for the evaluation of the resummed
cross-section formulae

RG-impr. PT Log. approx. Accuracy ∼ αn
s Lk Γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

×
z−η

(1 − z)1−2η
s̃DY

(
ln

M2(1 − z)2

µ2
sz

+ ∂η, µs

)
e−2γEη

Γ(2η)
, (50)

where η = 2aΓ(µs, µf), and we have defined the evolution function

U(M, µh, µs, µf) =

(
M2

µ2
h

)−2aΓ(µh,µs)

exp
[
4S(µh, µs) − 2aγV (µh, µs) + 4aγφ(µs, µf)

]
. (51)

As before, equation (50) is valid for η > 0 (µs > µf). For negative η (µf > µs), integrals of
lnn(1 − z)/(1 − z)1−2η with test functions f(z) must be defined using a subtraction at z = 1
and analytic continuation in η.

We emphasize that the result (50) is formally independent of the scales µh and µs, at which
the matching conditions for the hard and soft functions are evaluated. On the other hand,
the hard-scattering kernel C does depend on the factorization scale µf , at which the PDFs
are renormalized. In practice, a residual dependence on the matching scales arises when the
perturbative expansions of the matching coefficients and anomalous dimensions are truncated,
and this dependence can be used to estimate the remaining perturbative uncertainties. Setting
the three scales µh, µs, and µf equal to each other in the resummed expression (50), one can
readily reproduce the leading singular terms for z → 1 in the fixed-order perturbative QCD
expression for the hard-scattering kernel. In this way we have obtained the two-loop corrections
in (9).

The final expression (50) for the hard-scattering kernel can be evaluated at any desired
order in resummed perturbation theory. Table 1 shows what is required to obtain different
levels of accuracy. In this work we adopt the counting scheme of RG-improved perturbation
theory, where at LO one includes all O(1) terms, at NLO one includes all O(αs) terms, etc. The
large logarithm ln(µh/µs) is counted like O(1/αs). In the literature on threshold resummation
the alternative notation Nn+1LL is often used instead of NnLO. The leading logarithmic (LL)
approximation is listed only for completeness, as it misses some O(1) terms.

In the following section we will perform a detailed numerical analysis of the Drell-Yan cross
section and rapidity distribution. In most cases of phenomenological relevance the invariant
mass of the Drell-Yan pair will be small compared with the center-of-mass energy, i.e. τ =
M2/s ≪ 1. Nevertheless, it is interesting to briefly consider the limit τ → 1, in which the need
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For Sudakov problems the counting of the 
logarithms is done in the exponent!

[Becher, Neubert, Xu, 07’]

The large logarithms count as          , it is always possible to rewrite a log of a ratio of two scales as

3. Soft-Collinear Effective Theory

d

d lnµ
Ai (ν, µ) = −γi (αs(µ)) . (3.166)

Since dαs/β = d lnµ, one can conclude from Eqs. (3.165) that the functions Ai are respon-
sible for the resummation of the single logarithms and the function S for the resummation
of the double logarithms. Explicit expressions for of these functions can be obtained by
inserting the perturbative expansion of the beta and γ functions into Eqs. (3.165). By pa-
rameterizing the expansions of the beta function and anomalous dimensions γi as follows

β (αs) = −2αs

[
β0
(αs

4π

)
+ β1

(αs

4π

)2
+O(α3

s)

]
,

γcusp(αs) = Γ0

(αs

4π

)
+ Γ1

(αs

4π

)2
+O(α3

s) ,

γV (αs) = γ0
(αs

4π

)
+ γ1

(αs

4π

)2
+O(α3

s) , (3.167)

and by inserting these expansions into the integrands of Eqs. (3.165), one obtains

AγV (ν, µ) =
γ0
2β0

ln
αs(µ)

αs(ν)
+O(αs) ,

Aγcusp (ν, µ) =
Γ0

2β0
ln
αs(µ)

αs(ν)
+O(αs) ,

S (ν, µ) =
Γ0

4β2
0

[
4π

αs(ν)

(
r − 1

r
− ln r

)
+

(
Γ1

Γ0
−
β1
β0

)
(1− r + ln r)

+
β1
2β0

ln2 r

]

+O(αs) , (3.168)

where r = αs(µ)/αs(ν). Note that S (ν, µ) contains a term proportional to 1/αs. By ex-
panding S (ν, µ) in terms of a single coupling αs(µ), one would find that this expansion
produces terms of the form αn

s (µ) ln
2n(µ/ν). Thus S (ν, µ) encodes the leading logarith-

mic terms. The way we organize the computation, which consists of eliminating large
logarithms in favor of coupling constants at different scales and then expanding in these
couplings, is called Renormalization Group Improved Perturbation Theory. The large log-
arithms count as 1/αs, as can be seen from Eq. (3.163) remembering that β(αs) ∼ α2

s.
We note that the fixed-order expression for the Wilson coefficient C̃V (Eq. (3.157)),

becomes meaningless when µ ≫ Q or µ ≪ Q, since in these cases the logarithms are
large and the product αs ln(Q2/µ2) ∼ 1 cannot be used as a good expansion parameter.
In contrast, if µh is taken to be approximately equal to the scale Q, the expression in
Eq. (3.161) is valid for any value of µ for which αs is perturbative.
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(We remind the reader that dαs/d lnµ ∝ α2
s.) Eq. (3.158) is the RG equation satisfied

by the Wilson coefficient C̃V and the function γcusp is the Cusp Anomalous Dimension.
Currently the on-shell form factor is known up to three loops, therefore it is possible
to extract the anomalous dimensions γcusp and γV up to order α3

s. The RG equation in
Eq. (3.158) contains an explicit logarithmic dependence on the scale µ, this feature is a
characteristic of problems involving Sudakov double logarithms.
The solution of the RG equation in Eq. (3.158) sums the logarithmic terms to all orders

in αs, in fact one obtains the solution:

C̃V (Q
2, µ) = exp

{∫ µ

µh

[
CFγcusp(αs) ln

Q2

µ′2
+ γV (αs)

]
d lnµ′

}
C̃V (Q

2, µh) , (3.160)

where the logarithm appears in the exponential. It is convenient to write the solution as
the product of the Wilson coefficient calculated at a high scale µh and an evolution matrix
U which “runs down” the scale from µh to µ:

C̃V (Q
2, µ) = U (µh, µ) C̃V (Q

2, µh) . (3.161)

In Eq. (3.160) we can rewrite the integration over the scale as an integration over the
coupling by changing the integration variable from µ′ to αs(µ′) using

dαs(µ′)

d lnµ′
= β (αs(µ

′)) . (3.162)

One can also rewrite the logarithm in the exponent (3.160) by employing the relation

ln
ν

µ′
=

∫ αs(ν)

αs(µ′)

dα

β(α)
. (3.163)

Finally the evolution matrix can be written in the form

U (µh, µ) = exp
[
2CFS(µh, µ)− AγV (µh, µ)

](Q2

µ2
h

)−CFAγcusp (µh,µ)

, (3.164)

where the quantities S and Aγ are defined as

S (ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
,

Aγi(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γi(α)

β(α)
; (3.165)

with i ∈ {V, cusp}. It is straightforward to check that Eq. (3.161) with Eq. (3.164) indeed
solves the RG equation Eq. (3.158) by observing that

d

d lnµ
S (ν, µ) = −γcusp (αs(µ))

∫ αs(µ)

αs(ν)

dα′

β(α′)
,
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